processing.modules.seabird_functions module

Inheritance diagram of processing.modules.seabird_functions
class processing.modules.seabird_functions.AlignCTD[source]

Bases: ArrayModule

Align the given parameter columns.

Given a measurement parameter in parameters, the column will be shifted by either, a float amount that is given as value, or, by a calculated amount, using cross-correlation between the high-frequency components of the temperature and the target parameters. The returned numpy array will thus feature the complete CnvFile data, with the columns shifted to their correct positions.

transformation()[source]

Performs the base logic of distinguishing whether to use given values or compute a delay.

Return type:

A numpy array, representing the cnv data after the alignment.

estimate_sensor_delay(delayed_parameter, margin=240, shift_seconds=10)[source]

Estimate delay between a delayed parameter and temperature signals via cross-correlation of high-frequency components.

Parameters:
  • delayed_parameter (Parameter :) – The parameter whose delay shall be computed.

  • margin (int :) –

    A number of data points that are cutoff from both ends.

    (Default value = 240)

  • shift_seconds (int :) – Maximum time window to search for lag (default: 10 seconds).

Return type:

A float value, representing the parameter delay in seconds.

check_correlation_result(value, correlation_value)[source]

Performs several checks on the delay outputed by self.estimate_sensor_delay and returns True, if the result is considered feasible.

Return type:

bool

find_corresponding_temperature(parameter)[source]

Find the temperature values of the sensor that shared the same water mass as the input parameter.

Parameters:

parameter (Parameter :) – The parameter of interest.

Return type:

The temperature parameter object.

get_correlation(parameter)[source]

Gives a number indicating the cross correlation type regarding the input parameter and the temperature.

Basically distinguishes between positive correlation, 1, and anti- correlation, -1. This value is then used to alter the temperature values accordingly.

Parameters:

parameter (Parameter :) – The parameter to cross correlate with temperature.

Return type:

A float value representing positive or negative correlation.

handle_parameter_input(input_dict)[source]
Return type:

dict